Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1712.6493

 Article overview



Infrared, terahertz, and microwave spectroscopy of the soft and central modes in Pb(Mg1/3Nb2/3)O3
D. Nuzhnyy ; J. Petzelt ; V. Bovtun ; M. Kempa ; S. Kamba ; J. Hlinka ; B. Hehlen ;
Date 18 Dec 2017
AbstractFrom the new infrared (IR) reflectivity and time-domain terahertz (THz) spectra combined with available high-frequency dielectric data above the MHz range in a broad temperature range of 10-900 K, a full picture of the soft and central mode behavior in the classical relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 (PMN) is suggested. A detailed comparison is given with the recent hyper-Raman spectroscopy data (Phys. Rev. Lett. 117, 155501 (2016)), and also with other available experiments based on inelastic light and neutron scattering. The closest agreement is with the hyper-Raman data, both techniques yield the same number of soft-mode components and the same high-temperature softening towards the temperature T* ~ 400 K. In addition to evaluation of the IR-THz data using fitting with standard factorized form of the dielectric function, we performed a successful fitting of the same data using the effective medium approach (EMA), originally based on the assumption that the mesoscopic structure of PMN consists of randomly oriented uniaxially anisotropic polar nanodomains (PNDs) with somewhat harder TO polar modes in the direction along the local PND dipole (Phys. Rev. Lett. 96, 027601 (2006)). Evaluation using the Bruggeman EMA modelling has been successfully applied in the entire investigated temperature range. These results suggest that the response perpendicular to the local dipole moment, at high temperatures induced by random fields rather than PNDs, undergoes a classical softening from high temperatures with permittivity obeying the Curie-Weiss law, eps_per = C/(T-Tc), C = 1.7 x 10^5 K and Tc = 380 K. Below the Burns temperature ~620 K, a GHz relaxation ascribed to flipping of the PNDs emerges from the soft mode response, slows down and broadens, remaining quite strong towards the cryogenic temperatures, where it can be assigned to fluctuations of the PND boundaries.
Source arXiv, 1712.6493
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica