Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1811.0766

 Article overview


Modelling the abundance structure of isocyanic acid (HNCO) toward the low-mass solar type protostar IRAS 16293-2422
Antonio Hernández-Gómez ; Emna Sahnoun ; Emmanuel Caux ; Laurent Wiesenfeld ; Laurent Loinard ; Sandrine Bottinelli ; Kamel Hammami ; Karl M. Menten ;
Date 2 Nov 2018
AbstractIsocyanic acid (HNCO), the most stable of the simplest molecules containing the four main elements essential for organic chemistry, has been observed in several astrophysical environments such as molecular clouds, star-forming regions, external galaxies and comets. In this work, we model HNCO spectral line profiles toward the low-mass solar type protostar IRAS 16293$-2$422 observed with the ALMA interferometer, the IRAM, JCMT and APEX single-dish radio telescopes, and the HIFI instrument on board the Herschel Space Observatory. In star-forming environments, the HNCO emission is not always in Local Thermodynamical Equilibrium (LTE). A non-LTE radiative transfer approach is necessary to properly interpret the line profiles, and accurate collisional rate coefficients are needed. Here, we used the RADEX package with a completely new set of collisional quenching rates between HNCO and both ortho-H$_2$ and para-H$_2$ obtained from quantum chemical calculations yielding a novel potential energy surface in the rigid rotor approximation. We find that the lines profiles toward IRAS 16293$-$2422 are very well reproduced if we assume that the HNCO emission arises from a compact, dense and hot physical component associated with the hot corino, a warm component associated with the internal part of the protostellar envelope, and a cold and more extended component associated with the outer envelope. The derived HNCO abundances from our model agree well with those computed with the Nautilus chemical code.
Source arXiv, 1811.0766
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica