Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1811.2505

 Article overview



The core of the massive cluster merger MACS J0417.5-1154 as seen by VLT/MUSE
Mathilde Jauzac ; Guillaume Mahler ; Alastair C. Edge ; Keren Sharon ; Steven Gillman ; Harald Ebeling ; David Harvey ; Johan Richard ; Steven L. Hamer ; Michele Fumagalli ; A. Mark Swinbank ; Jean-Paul Kneib ; Richard Massey ; Philippe Salome ;
Date 6 Dec 2018
AbstractWe present a multi-wavelength analysis of the core of the massive galaxy cluster MACS,J0417.5-1154 ($z = 0.441$; MACS;J0417). Our analysis takes advantage of VLT/MUSE observations which allow the spectroscopic confirmation of three strongly-lensed systems. One of these, nick-named emph{The Doughnut}, consists of three complete images of a complex ring galaxy at $z = 0.8718$ and a fourth, partial and radial image close to the Brightest Cluster Galaxy (BCG) only discernible thanks to its strong [OII] line emission. The best-fit mass model (rms of 0.38arcsec) yields a two-dimensional enclosed mass of $M({ m R < 200,kpc}) = (1.77pm0.03) imes10^{14},msun$ and almost perfect alignment between the peaks of the BCG light and the dark matter of ($0.5pm0.5$)arcsec . Our finding that a significant misalignment results when the radial image of emph{The Doughnut} is omitted serves as an important caveat for studies of BCG-dark matter offsets in galaxy clusters. Using emph{Chandra} data to map the intra-cluster gas, we observe an offset between the gas and dark-matter peaks of ($1.7pm0.5$)arcsec, and excellent alignment of the X-ray peak with the location of optical emission line associated with the BCG. We interpret all observational evidence in the framework of on-going merger activity, noting specifically that the coincidence between the gas peak and the peak of blue light from the BCG may be evidence of dense, cold gas leading to direct star formation. We use the surface area $sigma_{mu}$ above a given magnification factor $mu$ as a metric to estimate the lensing power of MACS,J0417. We obtain $sigma(mu > 3) = 0.22$,arcmin$^2$ confirming MACS,J0417 as an efficient gravitational lens. Finally, we discuss the differences between our mass model and Mahler et al. (2018).
Source arXiv, 1811.2505
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica