Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/0401370

 Article overview



Simulations of spectral lines from an eccentric precessing accretion disc
S. B. Foulkes ; C. A. Haswell ; J. R. Murray ; D. J. Rolfe ;
Date 19 Dec 2003
Journal Mon.Not.Roy.Astron.Soc. 349 (2004) 1179
Subject astro-ph
Affiliation2,3), D. J. Rolfe (1,2) ( Department of Physics & Astronomy, The Open University, Department of Physics & Astronomy, University of Leicester, Department of Astrophysics & Supercomputing, Swinbourne University of Technology.
AbstractTwo dimensional SPH simulations of a precessing accretion disc in a q=0.1 binary system (such as XTE J1118+480) reveal complex and continuously varying shape, kinematics, and dissipation. The stream-disc impact region and disc spiral density waves are prominent sources of energy dissipation.The dissipated energy is modulated on the period P_{sh} = ({P_{orb}}^{-1}-{P_{prec}}^{-1}^{-1} with which the orientation of the disc relative to the mass donor repeats. This superhump modulation in dissipation energy has a variation in amplitude of ~10% relative to the total dissipation energy and evolves, repeating exactly only after a full disc precession cycle. A sharp component in the light curve is associated with centrifugally expelled material falling back and impacting the disc. Synthetic trailed spectrograms reveal two distinct "S-wave" features, produced respectively by the stream gas and the disc gas at the stream-disc impact shock. These S-waves are non-sinusoidal, and evolve with disc precession phase. We identify the spiral density wave emission in the trailed spectrogram. Instantaneous Doppler maps show how the stream impact moves in velocity space during an orbit. In our maximum entropy Doppler tomogram the stream impact region emission is distorted, and the spiral density wave emission is uppressed. A significant radial velocity modulation of the whole line profile occurs on the disc precession period. We compare our SPH simulation with a simple 3D model: the former is appropriate for comparison with emission lines while the latter is preferable for skewed absorption lines from precessing discs.
Source arXiv, astro-ph/0401370
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica