Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » astro-ph/0401482

 Article overview


Water Absorption From Line-of-Sight Clouds Toward W49A
Rene Plume ; Michael J. Kaufman ; David A. Neufeld ; Ronald L. Snell ; David J. Hollenbach ; Paul F. Goldsmith ; John Howe ; Edwin A. Bergin ; Gary J. Melnick ; Frank Bensch ;
Date 22 Dec 2003
Journal Astrophys.J. 605 (2004) 247-258
Subject astro-ph
AbstractWe have observed 6 clouds along the line-of-sight toward W49A using the Submillimeter Wave Astronomy Satellite (SWAS) and several ground-based observatories. The ortho-H2O 1-0 and OH (1665 and 1667 MHz) transitions are observed in absorption, whereas the low-J CO, 13CO, and C18O lines, as well as the [CI] 1-0 transition, are seen in emission. By using both the o-H218O and o-H2O absorption lines, we are able to constrain the column-averaged o-H_2O abundances in each line-of-sight cloud to within about an order of magnitude. Assuming the standard N(H2)/N(CO) ratio of 10^4, we find N(o-H2O)/N(H2) = 8.1 x 10^-8 - 4 x 10^-7 for three clouds with optically thin water lines. In three additional clouds, the H$_2$O lines are saturated so we have used observations of the H218O ground-state transition to find upper limits to the water abundance of 8.2x 10^-8 - 1.5x10^-6. We measure the OH abundance from the average of the 1665 and 1667 MHz observations and find N(OH)/N(H2) = 2.3x10^-7 - 1.1x10^-6. The o-H2O and OH abundances are similar to those determined for line-of-sight water absorption features towards W51 and Sgr B2 but are higher than those seen from water emission lines in molecular clouds. However, the clouds towards W49 have lower ratios of OH relative to H2O column densities than are predicted by simple models which assume that dissociative recombination is the primary formation pathway for OH and H2O. Building on the work of Neufeld et al. (2002), we present photo-chemistry models including additional chemical effects, which can also explain the observed OH and H2O column densities as well as the observed H2O/CO abundance ratios.
Source arXiv, astro-ph/0401482
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica