Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0402140

 Article overview



The X-Ray Derived Cosmological Star Formation History and the Galaxy X-Ray Luminosity Functions in the Chandra Deep Fields North and South
Colin Norman ; Andrew Ptak ; Ann Hornschemeier ; Guenther Hasinger ; Jacqueline Bergeron ; Andrea Comastri ; Riccardo Giacconi ; Roberto Gilli ; Karl Glazebrook ; Tim Heckman ; Lisa Kewley ; Piero Ranalli ; Piero Rosati ; Gyula Szokoly ; Paolo Tozzi ; JunXian Wang ; Wei Zheng ; Andrew Zirm ;
Date 6 Feb 2004
Journal Astrophys.J. 607 (2004) 721-738
Subject astro-ph
AbstractThe cosmological star formation rate in the combined Chandra Deep Fields North and South is derived from our X-Ray Luminosity Function for Galaxies in these Deep Fields. Mild evolution is seen up to redshift order unity with SFR ~ (1 + z)^{2.7}. This is the first directly observed normal star-forming galaxy X-ray luminosity function (XLF) at cosmologically interesting redshifts (z>0). This provides the most direct measure yet of the X-ray derived cosmic star-formation history of the Universe. We make use of Bayesian statistical methods to classify the galaxies and the two types of AGN, finding the most useful discriminators to be the X-ray luminosity, X-ray hardness ratio, and X-ray to optical flux ratio. There is some residual AGN contamination in the sample at the bright end of the luminosity function. Incompleteness slightly flattens the XLF at the faint end of the luminosity function. The XLF has a lognormal distribution and agrees well with the radio and infrared luminosity functions. However, the XLF does not agree with the Schechter luminosity function for the H-alpha LF indicating that additional and different physical processes may be involved in the establishment of the lognormal form of the XLF. The agreement of our star formation history points with the other star formation determinations in different wavebands (IR, Radio, H-alpha) gives an interesting constraint on the IMF, and X-rays may be measuring directly the binary star formation history of the Universe. X-ray studies will continue to be useful for probing the star formation history of the universe by avoiding problems of obscuration. Star formation may therefore be measured in more detail by deep surveys with future x-ray missions.
Source arXiv, astro-ph/0402140
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica