Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/0403014

 Article overview



Hydromagnetic and gravitomagnetic crust-core coupling in a precessing neutron star
Yuri Levin ; Caroline D’Angelo ;
Date 29 Feb 2004
Journal Astrophys.J. 613 (2004) 1157-1163
Subject astro-ph
AffiliationCITA), Caroline D’Angelo (University of Toronto
AbstractWe consider two types of mechanical coupling between the crust and the core of a precessing neutron star. First, we find that a hydromagnetic (MHD) coupling between the crust and the core strongly modifies the star’s precessional modes when $t_alesim (T_s imes T_p)^{1/2}$; here $t_a$ is the Alfven crossing timescale, and $T_s$ and $T_p$ are the star’s spin and precession periods, respectively. We argue that in a precessing pulsar PSR B1828-11 the restoring MHD stress prevents a free wobble of the crust relative to the non-precessing core. Instead, the crust and the proton-electron plasma in the core must precess in unison, and their combined ellipticity determines the period of precession. Link has recently shown that the neutron superfluid vortices in the core of PSR B1828-11 cannot be pinned to the plasma; he has also argued that this lack of pinning is expected if the proton Fermi liquid in the core is type-I superconductor. In this case, the neutron superfluid is dynamically decoupled from the precessing motion. The pulsar’s precession decays due to the mutual friction between the neutron superfluid and the plasma in the core. The decay is expected to occur over tens to hundreds of precession periods and may be measurable over a human lifetime. Such a measurement would provide information about the strong n-p interaction in the neutron-star core. Second, we consider the effect of gravitomagnetic coupling between the neutron superfluid in the core and the rest of the star and show that this coupling changes the rate of precession by about 10%. The general formalism developed in this paper may be useful for other applications.
Source arXiv, astro-ph/0403014
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica