Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » astro-ph/0403226

 Article overview


Bar Diagnostics in Edge-On Spiral Galaxies. III. N-Body Simulations of Disks
M. Bureau ; E. Athanassoula ;
Date 10 Mar 2004
Journal Astrophys.J. 626 (2005) 159-173
Subject astro-ph
AffiliationColumbia University), E. Athanassoula (Observatoire de Marseille
AbstractPresent in over 45% of local spirals, boxy and peanut-shaped bulges are generally interpreted as edge-on bars and may represent a key phase in the evolution of bulges. Aiming to test such claims, the kinematic properties of self-consistent 3D N-body simulations of bar-unstable disks are studied. Using Gauss-Hermite polynomials to describe the stellar kinematics, a number of characteristic bar signatures are identified in edge-on disks: 1) a major-axis light profile with a quasi-exponential central peak and a plateau at moderate radii (Freeman Type II profile); 2) a ``double-hump’’ rotation curve; 3) a sometime flat central velocity dispersion peak with a plateau at moderate radii and occasional local central minimum and secondary peak; 4) an h3-V correlation over the projected bar length. All those kinematic features are spatially correlated and can easily be understood from the orbital structure of barred disks. They thus provide a reliable and easy-to-use tool to identify edge-on bars. Interestingly, they are all produced without dissipation and are increasingly realized to be common in spirals, lending support to bar-driven evolution scenarios for bulge formation. So called ``figure-of-eight’’ position-velocity diagrams are never observed, as expected for realistic orbital configurations. Although not uniquely related to triaxiality, line-of-sight velocity distributions with a high velocity tail (i.e. an h3-V correlation) appear as particularly promising tracers of bars. The stellar kinematic features identified grow in strength as the bar evolves and vary little for small inclination variations. Many can be used to trace the bar length. Comparisons with observations are encouraging and support the view that boxy and peanut-shaped bulges are simply thick bars viewed edge-on.
Source arXiv, astro-ph/0403226
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica