Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » 1902.3044

 Article overview


Heavy-quark spin and flavour symmetry partners of the X(3872) revisited: what can we learn from the one boson exchange model?
Ming-Zhu Liu ; Tian-Wei Wu ; Manuel Pavon Valderrama ; Ju-Jun Xie ; Li-Sheng Geng ;
Date 8 Feb 2019
AbstractHeavy-quark symmetry as applied to heavy hadron systems implies that their interactions are independent of their heavy-quark spin (heavy-quark spin symmetry) and heavy flavour contents (heavy flavour symmetry). In the molecular hypothesis the $X(3872)$ resonance is a $1^{++}$ $D^*ar{D}$ bound state. If this is the case, the application of heavy-quark symmetry to a molecular $X(3872)$ suggests the existence of a series of partner states, the most obvious of which is a possible $2^{++}$ $D^*ar{D}^*$ bound state for which the two-body potential is identical to that of the $1^{++}$ $D^*ar{D}$ system, the reason being that these two heavy hadron-antihadron states have identical light-spin content. As already discussed in the literature this leads to the prediction of a partner state at $4012,{ m MeV}$, at least in the absence of other dynamical effects which might affect the location of this molecule. However the prediction of further heavy-quark symmetry partners cannot be done solely on the basis of symmetry and requires additional information. We propose to use the one boson exchange model to fill this gap, in which case we will be able to predict or discard the existence of other partner states. Besides the isoscalar $2^{++}$ $D^*ar{D}^*$ bound state, we correctly reproduce the location and quantum numbers of the isovector hidden-bottom $Z_b(10610)$ and $Z_b(10650)$ molecular candidates. We also predict the hidden-bottom $1^{++}$ $B^*ar{B}^*$ and $2^{++}$ $B^*ar{B}^*$ partners of the $X(3872)$, in agreement with previous theoretical speculations, plus a series of other states. The isoscalar, doubly charmed $1^+$ $D D^*$ and $D^* D^*$ molecules and their doubly bottomed counterparts are likely to bind, providing a few instances of explicitly exotic systems.
Source arXiv, 1902.3044
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica