Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 1902.7475

 Article overview


Luminosity outburst chemistry in protoplanetary discs: going beyond standard tracers
Dmitri S. Wiebe ; Tamara S. Molyarova ; Vitaly V. Akimkin ; Eduard I. Vorobyov ; Dmitry A. Semenov ;
Date 20 Feb 2019
AbstractThe chemical influence of luminosity outbursts on the environments of young solar-type stars is explored. Species are categorised into several types according to their response to the outburst. The first and second types imply chemical changes only during the outburst (with slightly different behaviours). These response types are mostly observed close to the star and are caused by icy mantle evaporation. However, mantles recover after the outburst almost immediately. A notable exception is benzene ice, which is accumulated on dust surfaces during and after the outburst, so that its abundance exceeds the pre-outburst level by orders of magnitude. The third type of response is mostly seen at the disc periphery and implies alteration of abundances during the outburst and preservation of these ’abnormal’ abundances for centuries. This behaviour is typical of organic compounds, like HCOOCH$_3$, CH$_3$CN, CH$_2$CO. Their presence in the dark disc regions can be a manifestation of the past outburst. CO and CO$_2$ only trace past outbursts at the remote disc regions. The outburst changes the C/O ratio, but it quickly returns to the pre-outburst value almost everywhere in the disc. An important factor determining the sensitivity of molecular composition to the outburst is the dust size distribution. The duration of the pre-outburst stage and of the outburst itself influence the chemical effects, if the burst duration is shorter than 50 yr and the duration of the quiescent phase between the bursts is shorter than 100 kyr.
Source arXiv, 1902.7475
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica