Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1902.7848

 Article overview


Gradient Scheduling with Global Momentum for Non-IID Data Distributed Asynchronous Training
Chengjie Li ; Ruixuan Li ; Pan Zhou ; Haozhao Wang ; Yuhua Li ; Song Guo ; Keqin Li ;
Date 21 Feb 2019
AbstractDistributed asynchronous offline training has received widespread attention in recent years because of its high performance on large-scale data and complex models. As data are processed from cloud-centric positions to edge locations, a big challenge for distributed systems is how to handle native and natural non-independent and identically distributed (non-IID) data for training. Previous asynchronous training methods do not have a satisfying performance on non-IID data because it would result in that the training process fluctuates greatly which leads to an abnormal convergence. We propose a gradient scheduling algorithm with global momentum (GSGM) for non-IID data distributed asynchronous training. Our key idea is to schedule the gradients contributed by computing nodes based on a white list so that each training node’s update frequency remains even. Furthermore, our new momentum method can solve the biased gradient problem. GSGM can make model converge effectively, and maintain high availability eventually. Experimental results show that for non-IID data training under the same experimental conditions, GSGM on popular optimization algorithms can achieve an 20% increase in training stability with a slight improvement in accuracy on Fashion-Mnist and CIFAR-10 datasets. Meanwhile, when expanding distributed scale on CIFAR-100 dataset that results in sparse data distribution, GSGM can perform an 37% improvement on training stability. Moreover, only GSGM can converge well when the number of computing nodes is 30, compared to the state-of-the-art distributed asynchronous algorithms.
Source arXiv, 1902.7848
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica