Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » 1902.8730

 Article overview


AliGraph: A Comprehensive Graph Neural Network Platform
Rong Zhu ; Kun Zhao ; Hongxia Yang ; Wei Lin ; Chang Zhou ; Baole Ai ; Yong Li ; Jingren Zhou ;
Date 23 Feb 2019
AbstractAn increasing number of machine learning tasks require dealing with large graph datasets, which capture rich and complex relationship among potentially billions of elements. Graph Neural Network (GNN) becomes an effective way to address the graph learning problem by converting the graph data into a low dimensional space while keeping both the structural and property information to the maximum extent and constructing a neural network for training and referencing. However, it is challenging to provide an efficient graph storage and computation capabilities to facilitate GNN training and enable development of new GNN algorithms. In this paper, we present a comprehensive graph neural network system, namely AliGraph, which consists of distributed graph storage, optimized sampling operators and runtime to efficiently support not only existing popular GNNs but also a series of in-house developed ones for different scenarios. The system is currently deployed at Alibaba to support a variety of business scenarios, including product recommendation and personalized search at Alibaba’s E-Commerce platform. By conducting extensive experiments on a real-world dataset with 492.90 million vertices, 6.82 billion edges and rich attributes, AliGraph performs an order of magnitude faster in terms of graph building (5 minutes vs hours reported from the state-of-the-art PowerGraph platform). At training, AliGraph runs 40%-50% faster with the novel caching strategy and demonstrates around 12 times speed up with the improved runtime. In addition, our in-house developed GNN models all showcase their statistically significant superiorities in terms of both effectiveness and efficiency (e.g., 4.12%-17.19% lift by F1 scores).
Source arXiv, 1902.8730
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica