Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 1903.5110

 Article overview



Simultaneous Measurements of Star Formation and Supermassive Black Hole Growth in Galaxies
Alexandra Pope ; Lee Armus ; Eric Murphy ; Susanne Aalto ; David Alexander ; Philip Appleton ; Amy Barger ; Matt Bradford ; Peter Capak ; Caitlin Casey ; Vassilis Charmandaris ; Ranga Chary ; Asantha Cooray ; Jim Condon ; Tanio Diaz Santos ; Mark Dickinson ; Duncan Farrah ; Carl Ferkinhoff ; Norman Grogin ; Ryan Hickox ; Allison Kirkpatrick ; Kohno Kotaro ; Allison Matthews ; Desika Narayanan ; Dominik Riechers ; Anna Sajina ; Mark Sargent ; Douglas Scott ; J.D. Smith ; Gordon Stacey ; Sylvain Veilleux ; Joaquin Vieira ;
Date 12 Mar 2019
AbstractGalaxies grow their supermassive black holes in concert with their stars, although the relationship between these major galactic components is poorly understood. Observations of the cosmic growth of stars and black holes in galaxies suffer from disjoint samples and the strong effects of dust attenuation. The thermal infrared holds incredible potential for simultaneously measuring both the star formation and black hole accretion rates in large samples of galaxies covering a wide range of physical conditions. Spitzer demonstrated this potential at low redshift, and by observing some of the most luminous galaxies at z~2. JWST will apply these methods to normal galaxies at these epochs, but will not be able to generate large spectroscopic samples or access the thermal infrared at high-redshift. An order of magnitude gap in our wavelength coverage will persist between JWST and ALMA. A large, cold infrared telescope can fill this gap to determine when (in cosmic time), and where (within the cosmic web), stars and black holes co-evolve, by measuring these processes simultaneously in statistically complete and unbiased samples of galaxies to z>8. A next-generation radio interferometer will have the resolution and sensitivity to measure star-formation and nuclear accretion in even the dustiest galaxies. Together, the thermal infrared and radio can uniquely determine how stars and supermassive blackholes co-evolve in galaxies over cosmic time.
Source arXiv, 1903.5110
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica