Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » astro-ph/0405387

 Article overview


High resolution imaging polarimetry of HL Tau and magnetic field structure
P. W. Lucas ; Misato Fukagawa ; Motohide Tamura ; A. F. Beckford ; Yoichi Itoh ; Koji Murakawa ; Hiroshi Suto ; Saeko S. Hayashi ; Yumiko Oasa ; Takahiro Naoi ; Yoshiyuki Doi ; Noboru Ebizuka ; Norio Kaifu ;
Date 20 May 2004
Journal Mon.Not.Roy.Astron.Soc. 352 (2004) 1347
Subject astro-ph
AbstractWe present high quality near infrared imaging polarimetry of HL Tau at 0.4 to 0.6 arcsec resolution, obtained with Subaru/CIAO and UKIRT/IRCAM. 3-D Monte Carlo modelling with aligned oblate grains is used to probe the structure of the circumstellar envelope and the magnetic field, as well as the dust properties. At J band the source shows a centrosymmetric pattern dominated by scattered light. In the H and K bands the central source becomes visible and its polarisation appears to be dominated by dichroic extinction, with a position angle inclined by ~40 degrees to the disc axis. The polarisation pattern of the environs on scales up to 200 AU is consistent with the same dichroic extinction signature superimposed on the centrosymmetric scattering pattern. These data can be modelled with a magnetic field which is twisted on scales from tens to hundreds of AU, or alternatively by a field which is globally misaligned with the disc axis. A unique solution to the field structure will require spatially resolved circular polarisation data. The best fit Monte Carlo model indicates a shallow near infrared extinction law. When combined with the observed high polarisation and non-negligible albedo these constraints can be fitted with a grain model involving dirty water ice mantles in which the largest particles have radii slightly in excess of 1 um. The best fit model has an envelope structure which is slightly flattened on scales up to several hundred AU. Both lobes of the bipolar outflow cavity contain a substantial optical depth of dust (not just within the cavity walls). Curved, approximately parabolic, cavity walls fit the data better than a conical cavity. The small inner accretion disc observed at millimetre wavelengths is not seen at this spatial resolution.
Source arXiv, astro-ph/0405387
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica