Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » 1904.0120

 Article overview



Air-Sea Interactions on Titan: Lake Evaporation, Atmospheric Circulation, and Cloud Formation
Scot C. R. Rafkin ; Alejandro Soto ;
Date 30 Mar 2019
AbstractTitan’s abundant lakes and seas exchange methane vapor and energy with the atmosphere via a process generally known as air-sea interaction. This turbulent exchange process is investigated with an atmospheric mesoscale model coupled to a slab model representation of an underlying lake. The impact of lake size, effective lake mixed layer depth, background wind speed, air-lake temperature differential, atmospheric humidity, and diabatic heating of the atmosphere on air-sea interaction processes is studied through 67 two-dimensional simulations. The general, quasi-steady solution is a non-linear superposition of a plume circulation driven by the buoyancy of evaporated methane and an opposing thermally direct (sea breeze) circulation driven by the thermal contrast between the cold marine layer over the lake and the warmer inland air. The specific solution depends on the value of selected atmosphere and lake property parameters and ranges from a persistent and strong methane-rich plume circulation over the lake with little to no sea breeze, or a rapidly developing sea breeze with a highly suppressed plume circulation. The solutions that appear most consistent with limited observational constraints are those where a sea breeze circulation is able to offset the opposing plume circulation. This scenario results in a cool, moist, and statically stable shallow marine layer with nearly calm winds and small turbulent flux exchanges with an underlying lake that is at least 2 K colder than the atmosphere. Other configurations produced extreme scenarios with strong surface winds that could trigger waves, supersaturated layers at the top of the plume circulation that would be conducive to cloud formation, and lakes cold enough to freeze. These extreme scenarios are unlikely to be realistic based on limited observational constraints.
Source arXiv, 1904.0120
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica