Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/0406482

 Article overview


Photometric Redshift of X-Ray Sources in the Chandra Deep Field South
W. Zheng ; V. J. Mikles ; V. Mainieri ; G. Hasinger ; P. Rosati ; C. Wolf ; C. Norman ; G. Szokoly ; R. Gilli ; P. Tozzi ; J. X. Wang ; A. Zirm ; R. Giacconi ;
Date 22 Jun 2004
Subject astro-ph
AbstractBased on the photometry of 10 near-UV, optical, and near-infrared bands of the Chandra Deep Field South, we estimate the photometric redshifts for 342 X-ray sources, which constitute ~99% of all the detected X-ray sources in the field. The models of spectral energy distribution are based on galaxies and a combination of power-law continuum and emission lines. Color information is useful for source classifications: Type-I AGN show non-thermal spectral features that are distinctive from galaxies and Type-II AGN. The hardness ratio in X-ray and the X-ray-to-optical flux ratio are also useful discriminators. Using rudimentary color separation techniques, we are able to further refine our photometric redshift estimations. Among these sources, 137 have reliable spectroscopic redshifts, which we use to verify the accuracy of photometric redshifts and to modify the model inputs. The average relative dispersion in redshift distribution is ~8%, among the most accurate for photometric surveys. The high reliability of our results is attributable to the high quality and broad coverage of data as well as the applications of several independent methods and a careful evaluation of every source. We apply our redshift estimations to study the effect of redshift on broadband colors and to study the redshift distribution of AGN. Our results show that both the hardness ratio and U-K color decline with redshift, which may be the result of a K-correction. The number of Type-II AGN declines significantly at z>2 and that of galaxies declines at z>1. However, the distribution of Type-I AGN exhibits less redshift dependence. As well, we observe a significant peak in the redshift distribution at z=0.6. We demonstrate that our photometric redshift estimation produces a reliable database for the study of X-ray luminosity of galaxies and AGN.
Source arXiv, astro-ph/0406482
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica