Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/0408003

 Article overview


Cosmology and the Halo Occupation Distribution from Small-Scale Galaxy Clustering in the Sloan Digital Sky Survey
Kevork Abazajian ; Zheng Zheng ; Idit Zehavi ; David H. Weinberg ; Joshua A. Frieman ; Andreas A. Berlind ; Michael R. Blanton ; Neta A. Bahcall ; J. Brinkmann ; Donald P. Schneider ; Max Tegmark ;
Date 30 Jul 2004
Journal Astrophys.J. 625 (2005) 613-620
Subject astro-ph
AbstractWe use the projected correlation function w_p(r_p) of a volume-limited subsample of the Sloan Digital Sky Survey (SDSS) main galaxy redshift catalogue to measure the halo occupation distribution (HOD) of the galaxies of the sample. Simultaneously, we allow the cosmology to vary within cosmological constraints imposed by cosmic microwave background experiments in a Lambda-CDM model. We find that combining w_p(r_p) for this sample alone with the observations by WMAP, ACBAR, CBI and VSA can provide one of the most precise techniques available to measure cosmological parameters. For a minimal flat six-parameter Lambda-CDM model with an HOD with three free parameters, we find Omega_m=0.278^{+0.027}_{-0.027}, sigma_8=0.812^{+0.028}_{-0.027}, and H_0=69.8^{+2.6}_{-2.6}km s^{-1} Mpc^{-1}; these errors are significantly smaller than from CMB alone and similar to those obtained by combining CMB with the large-scale galaxy power spectrum assuming scale-independent bias. The corresponding HOD parameters describing the minimum halo mass and the normalization and cut-off of the satellite mean occupation are M_min=(3.03^{+0.36}_{-0.36})x 10^{12} h^{-1} M_sun, M_1 = (4.58^{+0.60}_{-0.60})x 10^{13} h^{-1} M_sun, and kappa=4.44^{+0.51}_{-0.69}. When more parameters are added to the HOD model, the error bars on the HOD parameters increase because of degeneracies, but the error bars on the cosmological parameters do not increase greatly. Similar modeling for other galaxy samples could reduce the statistical errors on these results, while more thorough investigations of the cosmology dependence of nonlinear halo bias and halo mass functions are needed to eliminate remaining systematic uncertainties, which may be comparable to statistical uncertainties.
Source arXiv, astro-ph/0408003
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica