Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1905.7801

 Article overview



Formation of interstellar propanal and 1-propanol ice: a pathway involving solid-state CO hydrogenation
D. Qasim ; G. Fedoseev ; K.-J. Chuang ; V. Taquet ; T. Lamberts ; J. He ; S. Ioppolo ; E. F. van Dishoeck ; H. Linnartz ;
Date 19 May 2019
Abstract1-propanol (CH3CH2CH2OH) is a three carbon-bearing representative of primary linear alcohols that may have its origin in the cold dark cores in interstellar space. To test this, we investigated in the laboratory whether 1-propanol ice can be formed along pathways possibly relevant to the prestellar core phase. We aim to show in a two-step approach that 1-propanol can be formed through reaction steps that are expected to take place during the heavy CO freeze-out stage by adding C2H2 into the CO + H hydrogenation network via the formation of propanal (CH3CH2CHO) as an intermediate and its subsequent hydrogenation. Temperature programmed desorption-quadrupole mass spectrometry (TPD-QMS) is used to identify the newly formed propanal and 1-propanol. Reflection absorption infrared spectroscopy (RAIRS) is used as a complementary diagnostic tool. The mechanisms that can contribute to the formation of solid-state propanal and 1-propanol, as well as other organic compounds, during the heavy CO freeze-out stage are constrained by both laboratory experiments and theoretical calculations. Here it is shown that recombination of HCO radicals, formed upon CO hydrogenation, with radicals formed upon C2H2 processing - H2CCH and H3CCH2 - offers possible reaction pathways to solid-state propanal and 1-propanol formation. This extends the already important role of the CO hydrogenation chain in the formation of larger COMs (complex organic molecules). The results are used to compare with ALMA observations. The resulting 1-propanol:propanal ratio concludes an upper limit of < 0:35-0:55, which is complemented by computationally-derived activation barriers in addition to the experimental results.
Source arXiv, 1905.7801
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica