Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » 1906.4751

 Article overview



Star-forming clumps in the Lyman Alpha Reference Sample of galaxies -- I. Photometric analysis and clumpiness
Matteo Messa ; Angela Adamo ; Göran Östlin ; Jens Melinder ; Matthew Hayes ; Johanna S. Bridge ; John Cannon ;
Date 11 Jun 2019
AbstractWe study young star-forming clumps on physical scales of 10-500 pc in the Lyman-Alpha Reference Sample (LARS), a collection of low-redshift (z = 0.03-0.2) UV-selected star-forming galaxies. In each of the 14 galaxies of the sample, we detect clumps for which we derive sizes and magnitudes in 5 UV-optical filters. The final sample includes $sim$1400 clumps, of which $sim$600 have magnitude uncertainties below 0.3 in all filters. The UV luminosity function for the total sample of clumps is described by a power-law with slope $alpha = -2.03^{+0.11}_{-0.13}$. Clumps in the LARS galaxies have on average $Sigma_{SFR}$ values higher than what observed in HII regions of local galaxies and comparable to typical SFR densities of clumps in z = 1-3 galaxies. We derive the clumpiness as the relative contribution from clumps to the UV emission of each galaxy, and study it as a function of galactic-scale properties, i.e. $Sigma_{SFR}$ and the ratio between rotational and dispersion velocities of the gas ($v_s/sigma_0$). We find that in galaxies with higher $Sigma_{SFR}$ or lower $v_s/sigma_0$, clumps dominate the UV emission of their host systems. All LARS galaxies with Ly$alpha$ escape fractions larger than 10% have more than 50% of the UV luminosity from clumps. We tested the robustness of these results against the effect of different physical resolutions. At low resolution, the measured clumpiness appears more elevated than if we could resolve clumps down to single clusters. This effect is small in the redshift range covered by LARS, thus our results are not driven by the physical resolution.
Source arXiv, 1906.4751
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica