Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 1906.5043

 Article overview


Mechanics of allostery: contrasting the induced fit and population shift scenarios
Riccardo Ravasio ; Solange Flatt ; Le Yan ; Stefano Zamuner ; Carolina Brito ; Matthieu Wyart ;
Date 12 Jun 2019
AbstractIn allosteric proteins, binding a ligand can affect function at a distant location, for example by changing the binding affinity of a substrate at the active site. The induced fit and population shift models, which differ by the assumed number of stable configurations, explain such cooperative binding from a thermodynamic viewpoint. Yet, understanding what mechanical principles constrain these models remains a challenge. Here we provide an empirical study on 34 proteins supporting the idea that allosteric conformational change generally occurs along a soft elastic mode presenting extended regions of high shear. We argue, based on a detailed analysis of how the energy profile along such a mode depends on binding, that in the induced fit scenario there is an optimal stiffness $k_a^*sim 1/N$ for cooperative binding, where $N$ is the number of residues involved in the allosteric response. We find that the population shift scenario is more robust to mutation affecting stiffness, as binding becomes more and more cooperative with stiffness up to the same characteristic value $k_a^*$, beyond which cooperativity saturates instead of decaying. We confirm numerically these findings in a non-linear mechanical model. Dynamical considerations suggest that a stiffness of order $k_a^*$ is favorable in that scenario as well, supporting that for proper function proteins must evolve a functional elastic mode that is softer as their size increases. In consistency with this view, we find a significant anticorrelation between the stiffness of the allosteric response and protein size in our data set.
Source arXiv, 1906.5043
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica