Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » 1906.7708

 Article overview


Gas accretion damped by dust back-reaction at the snowline
Matías Gárate ; Til Birnstiel ; Joanna Drazkowska ; Sebastian Markus Stammler ;
Date 18 Jun 2019
AbstractContext. The water snowline divides dry and icy solid material in protoplanetary disks, and has been thought to significantly affect planet formation at all stages. If dry particles break up more easily than icy ones, then the snowline causes a traffic jam, because small grains drift inward at lower speeds than larger pebbles. Aims. We aim to measure the effect of high dust concentrations around the snowline onto the gas dynamics. Methods. Using numerical simulations, we model the global radial evolution of an axisymmetric protoplanetary disk. Our model includes particle growth, evaporation and recondensation of water, and the back-reaction of dust onto the gas, taking into account the vertical distribution of dust particles. Results. We find that the dust back-reaction can stop and even reverse the flux of gas outside the snowline, decreasing the gas accretion rate onto the star to under $50\%$ of its initial value. At the same time the dust accumulates at the snowline, reaching dust-to-gas ratios of $epsilon gtrsim 0.8$, and delivers large amounts of water vapor towards the inner disk, as the icy particles cross the snowline. However, the accumulation of dust at the snowline and the decrease in the gas accretion rate only take place if the global dust-to-gas ratio is high ($varepsilon_0 gtrsim 0.03$), if the viscous turbulence is low ($alpha_ u lesssim 10^{-3} $), if the disk is large enough ($r_c gtrsim 100, extrm{AU}$), and only during the early phases of the disk evolution ($t lesssim 1, extrm{Myr}$). Otherwise the dust back-reaction fails to perturb the gas motion.
Source arXiv, 1906.7708
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica