Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1906.7730

 Article overview


A joint XMM-NuSTAR observation of the galaxy cluster Abell 523: constraints on Inverse Compton emission
F. Cova ; F. Gastaldello ; D. R. Wik ; W. Boschin ; A. Botteon ; G. Brunetti ; D. A. Buote ; S. De Grandi ; D. Eckert ; S. Ettori ; L. Feretti ; M. Gaspari ; S. Ghizzardi ; G. Giovannini ; M. Ghirardi ; F. Govoni ; S. Molendi ; M. Murgia ; M. Rossetti ; V. Vacca ;
Date 18 Jun 2019
AbstractWe present the results of a joint XMM-Newton and NuSTAR observation (200 ks) of the galaxy cluster Abell 523 at $z=0.104$. The peculiar morphology of the cluster radio halo and its outlier position in the radio power P(1.4 GHz) - X-ray luminosity plane make it an ideal candidate for the study of radio-X-ray correlations and for the search of inverse Compton (IC) emission. We constructed thermodynamic maps derived from the XMM observations to describe in detail the physical and dynamical state of the ICM. We performed a point-to-point comparison in terms of surface brightness between the X-ray and radio emissions, to quantify their morphological discrepancies. Making use of NuSTAR’s hard X-ray focusing capability, we looked for IC emission both globally and locally, after modeling the purely thermal component with a multi-temperature description. The thermodynamic maps suggest the presence of a secondary merging process that could be responsible for the peculiar radio halo morphology. This hypothesis is supported by the comparison between the X-ray and radio surface brightnesses, which shows a broad intrinsic scatter and a series of outliers. The global NuSTAR spectrum can be explained by purely thermal gas emission, and there is no convincing evidence that an IC component is needed. The $3sigma$ upper limit on the IC flux in the 20-80 keV band is in the range $left[2.2 - 4.0 ight] imes 10^{-13} , mathrm{erg} , mathrm{s}^{-1} , mathrm{cm}^{-2}$, implying a lower limit on the magnetic field strength in the range $B > [0.23 - 0.31] , mu G$. Locally, we looked for IC emission in the central region of the cluster radio halo finding a $3sigma$ upper limit on the 20-80 keV non-thermal flux of $3.17 imes 10^{-14} , mathrm{erg} , mathrm{s}^{-1} , mathrm{cm}^{-2}$, corresponding to a lower limit on the magnetic field strength of $B gtrsim 0.81 , mu G$.
Source arXiv, 1906.7730
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica