Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1906.8797

 Article overview


The REASONS Survey: Resolved Millimeter Observations of a Large Debris Disk Around the Nearby F Star HD 170773
Aldo G. Sepulveda ; Luca Matra ; Grant M. Kennedy ; Carlos del Burgo ; Karin I. Oberg ; David J. Wilner ; Sebastian Marino ; Mark Booth ; John M. Carpenter ; Claire L. Davies ; William R.F. Dent ; Steve Ertel ; Jean-Francois Lestrade ; Jonathan P. Marshall ; Julien Milli ; Mark C. Wyatt ; Meredith A. MacGregor ; Brenda C. Matthews ;
Date 20 Jun 2019
AbstractDebris disks are extrasolar analogs to our own Kuiper Belt and they are detected around at least 17% of nearby Sun-like stars. The morphology and dynamics of a disk encode information about its history, as well as that of any exoplanets within the system. We used ALMA to obtain 1.3 mm observations of the debris disk around the nearby F5V star HD 170773. We image the face-on ring and determine its fundamental parameters by forward-modeling the interferometric visibilities through a Markov Chain Monte Carlo approach. Using a symmetric Gaussian surface density profile, we find a 71 $pm$ 4 au wide belt with a radius of 193$^{+2}_{-3}$ au, a relatively large radius compared to most other millimeter-resolved belts around late A / early F type stars. This makes HD 170773 part of a group of four disks around A and F stars with radii larger than expected from the recently reported planetesimal belt radius - stellar luminosity relation. Two of these systems are known to host directly imaged giant planets, which may point to a connection between large belts and the presence of long-period giant planets. We also set upper limits on the presence of CO and CN gas in the system, which imply that the exocomets that constitute this belt have CO and HCN ice mass fractions of <77% and <3%, respectively, consistent with Solar System comets and other exocometary belts.
Source arXiv, 1906.8797
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica