Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/0409360

 Article overview



Towards a unified model for black hole X-ray binary jets
R.P. Fender ; T.M. Belloni ; E. Gallo ;
Date 15 Sep 2004
Subject astro-ph
AffiliationAmsterdam), T.M. Belloni (INAF, Brera), E. Gallo (Amsterdam
AbstractWe present a unified semi-quantitative model for the disc-jet coupling in black hole X-ray binary systems. We argue that during the rising phase of a black hole transient outburst the steady jet known to be associated with the canonical ’low/hard’ state persists while the X-ray spectrum initially softens. Subsequently, the jet becomes unstable and an optically thin radio outburst is always associated with the soft X-ray peak at the end of this phase of softening. This peak corresponds to a ’soft very high state’ or ’steep power law’ state. Softer X-ray states are not associated with ’core’ radio emission. We further demonstrate quantitatively that the transient jets associated with these optically thin events are considerably more relativistic than those in the ’low/hard’ X-ray state. This in turn implies that as the disc makes its collapse inwards the jet Lorentz factor rapidly increases, resulting in an internal shock in the outflow, which is the cause of the observed optically thin radio emission. In addition, we estimate the jet power for a number of such transient events as a function of X-ray luminosity, and find them to be comparable to an extrapolation of the functions estimated for the ’low/hard’ state jets. Finally, we attempt to fit these results together into a coherent semi-quantitative model for the disc-jet coupling in all black hole X-ray binary systems (abridged).
Source arXiv, astro-ph/0409360
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica