Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » astro-ph/0409701

 Article overview


The spin of accreting stars: dependence on magnetic coupling to the disc
Sean Matt ; Ralph E. Pudritz ;
Date 28 Sep 2004
Journal Mon.Not.Roy.Astron.Soc. 356 (2005) 167-182
Subject astro-ph
AffiliationMcMaster University, Canada
AbstractWe formulate a general, steady-state model for the torque on a magnetized star from a surrounding accretion disc. For the first time, we include the opening of dipolar magnetic field lines due to the differential rotation between the star and disc, so the magnetic topology then depends on the strength of the magnetic coupling to the disc. This coupling is determined by the effective slip rate of magnetic field lines that penetrate the diffusive disc. Stronger coupling (i.e., lower slip rate) leads to a more open topology and thus to a weaker magnetic torque on the star from the disc. In the expected strong coupling regime, we find that the spin-down torque on the star is more than an order of magnitude smaller than calculated by previous models. We also use our general approach to examine the equilibrium (`disc-locked’) state, in which the net torque on the star is zero. In this state, we show that the stellar spin rate is roughly an order of magnitude faster than predicted by previous models. This challenges the idea that slowly-rotating, accreting protostars are disc locked. Furthermore, when the field is sufficiently open (e.g., for mass accretion rates > 5 x 10^{-9} M_sun / yr, for typical accreting protostars), the star will receive no magnetic spin-down torque from the disc at all. We therefore conclude that protostars must experience a spin-down torque from a source that has not yet been considered in the star-disc torque models--possibly from a stellar wind along the open field lines.
Source arXiv, astro-ph/0409701
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica