Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » 1907.5486

 Article overview



A Combined Computational and Experimental Investigation on Evaporation of a Sessile Water Droplet on a Heated Hydrophilic Substrate
Manish Kumar ; Rajneesh Bhardwaj ;
Date Sun, 31 Mar 2019 15:12:24 GMT (1895kb)
AbstractWe numerically and experimentally investigate evaporation of a sessile droplet on a heated substrate. We develop a finite element (FE) model in two-dimensional axisymmetric coordinates to solve coupled transport of heat in the droplet and substrate, and of the mass of liquid vapor in surrounding ambient while assuming diffusion-limited, quasi-steady evaporation of the droplet. The two-way coupling is implemented using an iterative scheme and under-relaxation is used to ensure numerical stability. The FE model is validated against the published spatial profile of the evaporation mass flux and temperature of the liquid-gas interface. We discuss cases in which the two-way coupling is significantly accurate than the one-way coupling. In experiments, we visualized side view of an evaporating microliter water droplet using a high-speed camera at different substrate temperatures and recorded temperature of the liquid-gas interface from the top using an infrared camera. We examine the dependency of inversion of the temperature profile across the liquid-gas interface on the ratio of the substrate thickness to the wetted radius, the ratio of the thermal conductivity of the substrate to that of the droplet and contact angle. A comparison of measured evaporation mass rate with the computed values at different substrate temperature show that the evaporation mass rate increases non-linearly with respect to the substrate temperature, and FE model predicts these values close to the experimental data. Comparisons of time-averaged evaporation mass rate obtained by the previous and present models against the measurements suggest that the evaporative cooling at the interface and variation of diffusion coefficient with temperature should be taken into account in the model in order to accurately capture the measurements.
Source arXiv, 1907.5486
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica