Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » 1907.5715

 Article overview


Freeze and Chaos for DNNs: an NTK view of Batch Normalization, Checkerboard and Boundary Effects
Arthur Jacot ; Franck Gabriel ; Clément Hongler ;
Date 11 Jul 2019
AbstractIn this paper, we analyze a number of architectural features of Deep Neural Networks (DNNs), using the so-called Neural Tangent Kernel (NTK). The NTK describes the training trajectory and generalization of DNNs in the infinite-width limit.
In this limit, we show that for (fully-connected) DNNs, as the depth grows, two regimes appear: "freeze" (also known as "order"), where the (scaled) NTK converges to a constant (slowing convergence), and "chaos", where it converges to a Kronecker delta (limiting generalization).
We show that when using the scaled ReLU as a nonlinearity, we naturally end up in the "freeze". We show that Batch Normalization (BN) avoids the freeze regime by reducing the importance of the constant mode in the NTK. A similar effect is obtained by normalizing the nonlinearity which moves the network to the chaotic regime.
We uncover the same "freeze" and "chaos" modes in Deep Deconvolutional Networks (DC-NNs). The "freeze" regime is characterized by checkerboard patterns in the image space in addition to the constant modes in input space. Finally, we introduce a new NTK-based parametrization to eliminate border artifacts and we propose a layer-dependent learning rate to improve the convergence of DC-NNs.
We illustrate our findings by training DCGANs using our setup. When trained in the "freeze" regime, we see that the generator collapses to a checkerboard mode. We also demonstrate numerically that the generator collapse can be avoided and that good quality samples can be obtained, by tuning the nonlinearity to reach the "chaos" regime (without using batch normalization).
Source arXiv, 1907.5715
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica