Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1907.6442

 Article overview


A convolutional neural network approach for reconstructing polarization information of photoelectric X-ray polarimeters
Takao Kitaguchi ; Kevin Black ; Teruaki Enoto ; Asami Hayato ; Joanne E. Hill ; Wataru B. Iwakiri ; Philip Kaaret ; Tsunefumi Mizuno ; Toru Tamagawa ;
Date 15 Jul 2019
AbstractThis paper presents a data processing algorithm with machine learning for polarization extraction and event selection applied to photoelectron track images taken with X-ray polarimeters. The method uses a convolutional neural network (CNN) classification to predict the azimuthal angle and 2-D position of the initial photoelectron emission from a 2-D track image projected along the X-ray incident direction. Two CNN models are demonstrated with data sets generated by a Monte Carlo simulation: one has a commonly used loss function calculated by the cross entropy and the other has an additional loss term to penalize nonuniformity for an unpolarized modulation curve based on the $H$-test, which is used for periodic signal search in X-ray/$gamma$-ray astronomy. The modulation curve calculated by the former model with unpolarized data has several irregular features, which can be canceled out by unfolding the angular response or simulating the detector rotation. On the other hand, the latter model can predict a flat modulation curve with a residual systematic modulation down to $lesssim1$%. Both models show almost the same modulation factors and position accuracy of less than 2 pixel (or 240 $mu$m) for all four test energies of 2.7, 4.5, 6.4, and 8.0 keV. In addition, event selection is performed based on probabilities from the CNN to maximize the polarization sensitivity considering a trade-off between the modulation factor and signal acceptance. The developed method with machine learning improves the polarization sensitivity by 10-20%, compared to that determined with the image moment method developed previously.
Source arXiv, 1907.6442
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica