Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/0410498

 Article overview



The Temperature Structure of the Warm-Hot Intergalactic Medium
Naoki Yoshida ; Steven Furlanetto ; Lars Hernquist ;
Date 21 Oct 2004
Journal Astrophys.J. 618 (2004) L91-L94
Subject astro-ph
AffiliationNagoya University), Steven Furlanetto (Caltech), Lars Hernquist (CfA
AbstractWe study the temperature structure of the intergalactic medium (IGM) using a large cosmological N-body/SPH simulation. We employ a two-temperature model for the thermal evolution of the ionized gas, in which the relaxation process between electrons and ions is explicitly included. In the diffuse, hot IGM, the relaxation time is comparable to the age of the Universe and hence the electron temperature in post-shock regions remains significantly smaller than the ion temperature. We show that, at the present epoch, a large fraction of the warm/hot intergalactic medium (WHIM) has a well-developed two temperature structure, with typical temperature differences of order a factor of a few. Consequently, the fraction of metals in various ionization states such as OVI, OVII, and OVIII, as well as their line emissivities, can differ locally by more than an order of magnitude from those computed with a single temperature model. It is thus necessary to follow the evolution of the electron temperature explicitly to determine absorption and emission by the WHIM. Although equipartition is nearly achieved in the denser intracluster medium (ICM), we find an appreciable systematic deviation between the gas-mass weighted electron temperature and the mean temperature even at half the virial radii of clusters. There is thus a reservoir of warm (Te < 1keV) gas in and around massive clusters. Our results imply that relaxation processes need to be considered in describing and interpreting observational data from existing X-ray telescopes as well as from future missions designed to detect the WHIM, such as the Diffuse Intergalactic Oxygen Surveyor and the Missing Baryon Explorer.
Source arXiv, astro-ph/0410498
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica