Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » 1908.1770

 Article overview


Probability density function (PDF) models for particle transport in porous media
Matteo Icardi ; Marco Dentz ;
Date 5 Aug 2019
AbstractMathematical models based on probability density functions (PDF) have been extensively used in hydrology and subsurface flow problems, to describe the uncertainty in porous media properties (e.g., permeability modelled as random field). Recently, closer to the spirit of PDF models for turbulent flows, some approaches have used this statistical viewpoint also in pore-scale transport processes (fully resolved porous media models). When a concentration field is transported, by advection and diffusion, in a heterogeneous media, in fact, spatial PDFs can be defined to characterise local fluctuations and improve or better understand the closures performed by classical upscaling methods. In the study of hydrodynamical dispersion, for example, PDE-based PDF approach can replace expensive and noisy Lagrangian simulations (e.g. trajectories of drift-diffusion stochastic processes). In this work we derive a joint position-velocity Fokker-Planck equation to model the motion of particles undergoing advection and diffusion in in deterministic or stochastic heterogeneous velocity fields. After appropriate closure assumptions, this description can help deriving rigorously stochastic models for the statistics of Lagrangian velocities. This is very important to be able to characterise the dispersion properties and can, for example, inform velocity evolution processes in Continuous Time Random Walk (CTRW) dispersion models. The closure problem that arises when averaging the Fokker Planck equation shows also interesting similarities with the mixing problem and can be used to propose alternative closures for anomalous dispersion.
Source arXiv, 1908.1770
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica