Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » astro-ph/0412387

 Article overview


Carbon Monoxide in low-mass dwarf stars
Hugh R.A. Jones ; Yakiv Pavlenko ; Serena Viti ; R.J. Barber ; Larisa A. Yakovina ; David Pinfield ; Jonathan Tennyson ;
Date 15 Dec 2004
Journal Mon.Not.Roy.Astron.Soc. 358 (2005) 105-112
Subject astro-ph
AbstractWe compare high resolution infrared observations of the CO 3-1 bands in the 2.297-2.310 micron region of M dwarfs and one L dwarf with theoretical expectations. We find a good match between the observational and synthetic spectra throughout the 2000-3500K temperature regime investigated. Nonetheless, for the 2500-3500 K temperature range the temperatures that we derive from synthetic spectral fits are higher than expected from more empirical methods by several hundred K. In order to reconcile our findings with the empirical temperature scale it is necessary to invoke warming of the model atmosphere used to construct the synthetic spectra. We consider that the most likely reason for the back-warming is missing high temperature opacity due to water vapour. We compare the water vapour opacity of the Partridge & Schwenke (1997) line list used for the model atmosphere with the output from a preliminary calculation by Barber & Tennyson (2004). While the Partridge & Schwenke line list is a reasonable spectroscopic match for the new line list at 2000 K, by 4000 K it is missing around 25% of the water vapour opacity. We thus consider that the offset between empirical and synthetic temperature scales is explained by the lack of hot water vapour used for computation of the synthetic spectra. For our coolest objects with temperatures below 2500 K we find best fits when using synthetic spectra which include dust emission. Our spectra also allow us to constrain the rotational velocities of our sources, and these velocities are consistent with the broad trend of rotational velocities increasing from M to L.
Source arXiv, astro-ph/0412387
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica