Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1911.2635

 Article overview


Roper State from Overlap Fermions
Mingyang Sun ; Ying Chen ; Gen Wang ; Andrei Alexandru ; Shao-Jing Dong ; Terrence Draper ; Jacob Fallica ; Ming Gong ; Frank X. Lee ; Anyi Li ; Jian Liang ; Keh-Fei Liu ; Nilmani Mathur ; Yi-Bo Yang ;
Date 6 Nov 2019
AbstractThe Roper state is extracted with valence overlap fermions on a $2+1$-flavor domain-wall fermion lattice (spacing $a = 0.114$ fm and $m_{pi} = 330$ MeV) using both the Sequential Empirical Bayes (SEB) method and the variational method. The results are consistent, provided that a large smearing-size interpolation operator is included in the variational calculation to have better overlap with the lowest radial excitation. Similar calculations carried out for an anisotropic clover lattice with similar parameters find the Roper $approx 280$ MeV higher than that of the overlap fermion. The fact that the prediction of the Roper state by overlap fermions is consistently lower than those of clover fermions, chirally improved fermions, and twisted-mass fermions over a wide range of pion masses has been dubbed a "Roper puzzle."
To understand the origin of this difference, we study the hairpin $Z$-diagram in the isovector scalar meson ($a_0$) correlator in the quenched approximation. Comparing the $a_0$ correlators for clover and overlap fermions, at a pion mass of 290 MeV, we find that the spectral weight of the ghost state with clover fermions is smaller than that of the overlap at $a = 0.12$ fm and $0.09$ fm, whereas the whole $a_0$ correlators of clover and overlap at $a = 0.06$ fm coincide within errors. This suggests that chiral symmetry is restored for clover at $a le 0.06$ fm and that the Roper should come down at and below this $a$.
We conclude that this work supports a resolution of the "Roper puzzle" due to $Z$-graph type chiral dynamics. This entails coupling to higher components in the Fock space (e.g. $Npi$, $Npipi$ states) to induce the effective flavor-spin interaction between quarks as prescribed in the chiral quark model, resulting in the parity-reversal pattern as observed in the experimental excited states of $N, Delta$ and $Lambda$.
Source arXiv, 1911.2635
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica