Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'502'364
Articles rated: 2609

23 April 2024
 
  » arxiv » cond-mat/0403421

 Article overview


Isotopically engineered silicon nanostructures in quantum computation and communication
Issai Shlimak ;
Date 17 Mar 2004
Journal HAIT Journal of Science and Engineering, vol.1, pp.196-206 (2004)
Subject Materials Science; Mesoscopic Systems and Quantum Hall Effect | cond-mat.mtrl-sci cond-mat.mes-hall
AbstractNatural silicon consists of three stable isotopes with atomic mass 28 (92.21%), 29 (4.70%) and 30 (3.09%). To present day, isotopic enrichment of Si was used in electronics for two goals: (i) fabrication of substrates with high level of doping and homogeneous distribution of impurities and (ii) for fabrication of substrates with enhanced heat conduction which allows further chips miniaturization. For the first purpose, enrichment of Si with Si-30 is used, because after irradiation of a Si ingot by the thermal neutron flux in a nuclear reactor, this isotope transmutes into a phosphorus atom which is a donor impurity in Si. Enrichment of Si with Si-30 allows one to increase the level of doping up to a factor of 30 with a high homogeneity of the impurity distribution. The second purpose is achieved in Si highly enriched with isotope Si-28, because mono-isotopic Si is characterized by enhanced thermal conductivity. New potential of isotopically engineered Si comes to light because of novel areas of fundamental and applied scientific activity connected with spintronics and a semiconductor-based nuclear spin quantum computer where electron and/or nuclear spins are the object of manipulation. In this case, control of the abundance of nuclear spins is extremely important. Fortunately, Si allows such a control, because only isotope Si-29 has a non-zero nuclear spin. Therefore, enrichment or depletion of Si with isotope Si-29 will lead to the creation of a material with a controlled concentration of nuclear spins. Two examples of nano-devices for spintronics and quantum computation, based on isotopically engineered silicon, are discussed.
Source arXiv, cond-mat/0403421
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica