Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » cond-mat/0403740

 Article overview


Steady advection-diffusion around finite absorbers in two-dimensional potential flows
Jaehyuk Choi ; Dionisios Margetis ; Todd M. Squires ; Martin Z. Bazant ;
Date 30 Mar 2004
Subject Soft Condensed Matter; Statistical Mechanics | cond-mat.soft cond-mat.stat-mech
AffiliationMIT Math), Dionisios Margetis (MIT Math), Todd M. Squires (Caltech ACM and Physics), and Martin Z. Bazant (MIT Math
AbstractWe perform an exhaustive study of the simplest, nontrivial problem in advection-diffusion -- a finite absorber of arbitrary cross section in a steady two-dimensional potential flow of concentrated fluid. This classical problem has been studied extensively in the theory of solidification from a flowing melt, and it also arises in Advection-Diffusion-Limited Aggregation. In both cases, the fundamental object is the flux to a circular disk, obtained by conformal mapping from more complicated shapes. We construct the first accurate numerical solution using an efficient new method, which involves mapping to the interior of the disk and using a spectral method in polar coordinates. Our method also combines exact asymptotics and an adaptive mesh to handle boundary layers. Starting from a well-known integral equation in streamline coordinates, we also derive new, high-order asymptotic expansions for high and low Péclet numbers ($Pe$). Remarkably, the `high’ $Pe$ expansion remains accurate even for such low $Pe$ as $10^{-3}$. The two expansions overlap well near $Pe = 0.1$, allowing the construction of an analytical connection formula that is uniformly accurate for all $Pe$ and angles on the disk with a maximum relative error of 1.75%. We also obtain an analytical formula for the Nusselt number ($Nu$) as a function of the Péclet number with a maximum relative error of 0.53% for all possible geometries. Because our finite-plate problem can be conformally mapped to other geometries, the general problem of two-dimensional advection-diffusion past an arbitrary finite absorber in a potential flow can be considered effectively solved.
Source arXiv, cond-mat/0403740
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica