Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 2002.2133

 Article overview



The frequency drift and fine structures of Solar S-bursts in the high frequency band of LOFAR
PeiJin Zhang ; Pietro Zucca ; ChuanBing Wang ; Mario M. Bisi ; Bartosz Dabrowski ; Richard A. Fallows ; Andrzej Krankowski ; Jasmina Magdalenic ; Gottfried Mann ; Diana E. Morosan ; Christian Vocks ;
Date 6 Feb 2020
AbstractSolar S-bursts are short duration ($<1$ s at decameter wavelengths) radio bursts that have been observed during periods of moderate solar activity, where S stands for short. The frequency drift of S-bursts can reflect the density variation and the motion state of the electron beams. In this work, we investigate the frequency drift and the fine structure of the S-bursts with the LOw Frequency ARray (LOFAR). We find that the average frequency drift rate of the S-bursts within 110-180MHz could be described by $df/dt=-0.0077f^{1.59}$. With the high time and frequency resolution of LOFAR, we can resolve the fine structures of the observed solar S-bursts. A fine drift variation pattern was found in the structure of S-bursts (referred to as solar Sb-bursts in this paper) during the type-III storm on 2019 April 13, in the frequency band of 120-240 MHz. The Sb-bursts have a quasi-periodic segmented pattern, and the relative flux intensity tends to be large when the frequency drift rate is relatively large. This kind of structure exists in about 20\% of the solar S-burst events within the observed frequency range. We propose that the fine structure is due to the density fluctuations of the background coronal density. We performed a simulation based on this theory which can reproduce the shape and relative flux intensity of the Sb-bursts. This work shows that the fine structure of solar radio bursts can be used to diagnose the coronal plasma.
Source arXiv, 2002.2133
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica