Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

24 April 2024
 
  » arxiv » cond-mat/0404593

 Article overview


The shortest path to complex networks
S.N. Dorogovtsev ; J.F.F. Mendes ;
Date 24 Apr 2004
Subject Statistical Mechanics; Molecular Networks; Adaptation and Self-Organizing Systems; Networking and Internet Architecture | cond-mat.stat-mech cs.NI nlin.AO q-bio.MN
Abstract1. The birth of network science. 2. What are random networks? 3. Adjacency matrix. 4. Degree distribution. 5. What are simple networks? Classical random graphs. 6. Birth of the giant component. 7. Topology of the Web. 8.Uncorrelated networks. 9. What are small worlds? 10. Real networks are mesoscopic objects. 11. What are complex networks? 12. The configuration model. 13. The absence of degree--degree correlations. 14.Networks with correlated degrees.15.Clustering. 16. What are small-world networks? 17. `Small worlds’ is not the same as `small-world networks’. 18. Fat-tailed degree distributions. 19.Reasons for the fat-tailed degree distributions. 20. Preferential linking. 21. Condensation of edges. 22. Cut-offs of degree distributions. 23. Reasons for correlations in networks. 24. Classical random graphs cannot be used for comparison with real networks. 25. How to measure degree--degree correlations. 26. Assortative and disassortative mixing. 27. Disassortative mixing does not mean that vertices of high degrees rarely connect to each other. 28. Reciprocal links in directed nets. 29. Ultra-small-world effect. 30. Tree ansatz. 31.Ultraresilience against random failures. 32. When correlated nets are ultraresilient. 33. Vulnerability of complex networks. 34. The absence of an epidemic threshold. 35. Search based on local information. 36.Ultraresilience disappears in finite nets. 37.Critical behavior of cooperative models on networks. 38. Berezinskii-Kosterlitz-Thouless phase transitions in networks. 39.Cascading failures. 40.Cliques & communities. 41. Betweenness. 42.Extracting communities. 43. Optimal paths. 44.Distributions of the shortest-path length & of the loop’s length are narrow. 45. Diffusion on networks. 46. What is modularity? 47.Hierarchical organization of networks. 48. Convincing modelling of real-world networks:Is it possible? 49. The small Web..
Source arXiv, cond-mat/0404593
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica