Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 2003.2036

 Article overview


Proxima Centauri b: A Strong Case for including Cosmic-Ray-induced Chemistry in Atmospheric Biosignature Studies
M. Scheucher ; K. Herbst ; V. Schmidt ; J.L. Grenfell ; F. Schreier ; S. Banjac ; B. Heber ; H. Rauer ; M. Sinnhuber ;
Date 4 Mar 2020
AbstractDue to its Earth-like minimum mass of 1.27 M$_{ ext{E}}$ and its close proximity to our Solar system, Proxima Centauri b is one of the most interesting exoplanets for habitability studies. Its host star, Proxima Centauri, is however a strongly flaring star, which is expected to provide a very hostile environment for potentially habitable planets. We perform a habitability study of Proxima Centauri b assuming an Earth-like atmosphere under high stellar particle bombardment, with a focus on spectral transmission features. We employ our extensive model suite calculating energy spectra of stellar particles, their journey through the planetary magnetosphere, ionosphere, and atmosphere, ultimately providing planetary climate and spectral characteristics, as outlined in Herbst et al. (2019). Our results suggest that together with the incident stellar energy flux, high particle influxes can lead to efficient heating of the planet well into temperate climates, by limiting CH$_4$ amounts, which would otherwise run into anti-greenhouse for such planets around M-stars. We identify some key spectral features relevant for future spectral observations: First, NO$_2$ becomes the major absorber in the visible, which greatly impacts the Rayleigh slope. Second, H$_2$O features can be masked by CH$_4$ (near infra-red) and CO$_2$ (mid to far infra-red), making them non-detectable in transmission. Third, O$_3$ is destroyed and instead HNO$_3$ features become clearly visible in the mid to far infra-red. Lastly, assuming a few percent of CO$_2$ in the atmosphere, CO$_2$ absorption at 5.3 $mu$m becomes significant (for flare and non-flare cases), strongly overlapping with a flare related NO feature in Earth’s atmosphere.
Source arXiv, 2003.2036
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica