Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 2003.5945

 Article overview


No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations
Xiangcheng Ma ; Eliot Quataert ; Andrew Wetzel ; Philip F. Hopkins ; Claude-André Faucher-Giguère ; Dušan Kereš ;
Date 12 Mar 2020
AbstractWe present the escape fraction of hydrogen ionizing photons (f_esc) from a sample of 34 high-resolution cosmological zoom-in simulations of galaxies at z>5 in the Feedback in Realistic Environments project, post-processed with a Monte Carlo radiative transfer code for ionizing radiation. Our sample consists of 8500 halos in M_vir~10^8--10^{12} M_sun (M_star~10^4--10^{10} M_sun) at z=5--12. We find the sample average <f_esc> increases with halo mass for M_vir~10^8--10^{9.5} M_sun, becomes nearly constant for M_vir~10^{9.5}--10^{11} M_sun, and decreases at M_vir>10^{11} M_sun. Equivalently, <f_esc> increases with stellar mass up to M_star~10^8 M_sun and decreases at higher masses. Even applying single-star stellar population synthesis models, we find a moderate <f_esc>~0.2 for galaxies at M_star~10^8 M_sun. Nearly half of the escaped ionizing photons come from stars 1--3 Myr old and the rest from stars 3--10 Myr old. Binaries only have a modest effect, boosting <f_esc> by ~25--35% and the number of escaped photons by 60--80%. Most leaked ionizing photons are from vigorously star-forming regions that usually contain a feedback-driven kpc-scale superbubble surrounded by a dense shell. The shell is forming stars while accelerated, so new stars formed earlier in the shell are already inside the shell. Young stars in the bubble and near the edge of the shell can fully ionize some low-column-density paths pre-cleared by feedback, allowing a large fraction of their ionizing photons to escape. The decrease of <f_esc> at the high-mass end is due to dust attenuation, while at the low-mass end, <f_esc> decreases owing to inefficient star formation (and hence feedback). At fixed mass, <f_esc> tends to increase with redshift. Our simulations produce sufficient ionizing photons for cosmic reionization.
Source arXiv, 2003.5945
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica