Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 2003.8189

 Article overview


Spirals inside the millimeter cavity of transition disk SR 21
G. A. Muro-Arena ; C. Ginski ; C. Dominik ; M. Benisty ; P. Pinilla ; A. J. Bohn ; T. Moldenhauer ; W. Kley ; D. Harsono ; T. Henning ; R. G. van Holstein ; M. Janson ; M. Keppler ; F. Ménard ; L. M. Pérez ; T. Stolker ; M. Tazzari ; M. Villenave ; A. Zurlo ; C. Petit ; F. Rigal ; O. Möller-Nilsson ; M. Llored ; T. Moulin ; P.Rabou ;
Date 18 Mar 2020
AbstractHydrodynamical simulations of planet-disk interactions suggest that planets may be responsible for a number of the sub-structures frequently observed in disks in both scattered light and dust thermal emission. Despite the ubiquity of these features, direct evidence of planets embedded in disks and of the specific interaction features like spiral arms within planetary gaps still remain rare. In this study we discuss recent observational results in the context of hydrodynamical simulations in order to infer the properties of a putative embedded planet in the cavity of a transition disk. We imaged the transition disk SR 21 in H-band in scattered light with SPHERE/IRDIS and in thermal dust emission with ALMA band 3 (3mm) observations at a spatial resolution of 0.1". We combine these datasets with existing band 9 (430um) and band 7 (870um) ALMA continuum data. The Band 3 continuum data reveals a large cavity and a bright ring peaking at 53 au strongly suggestive of dust trapping.The ring shows a pronounced azimuthal asymmetry, with a bright region in the north-west that we interpret as a dust over-density. A similarly-asymmetric ring is revealed at the same location in polarized scattered light, in addition to a set of bright spirals inside the mm cavity and a fainter spiral bridging the gap to the outer ring. These features are consistent with a number of previous hydrodynamical models of planet-disk interactions, and suggest the presence of a ~1 MJup planet at 44 au and PA=11{deg}. This makes SR21 the first disk showing spiral arms inside the mm cavity, as well as one for which the location of a putative planet can be precisely inferred. With the location of a possible planet being well-constrained by observations, it is an ideal candidate for follow-up observations to search for direct evidence of a planetary companion still embedded in its disk.
Source arXiv, 2003.8189
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica