Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » cond-mat/0406440

 Article overview


Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm
Michael Zwolak ; Guifre Vidal ;
Date 21 Jun 2004
Journal Phys. Rev. Lett. 93, 207205 (2004)
Subject Strongly Correlated Electrons | cond-mat.str-el quant-ph
AbstractWe present an algorithm to study mixed-state dynamics in one-dimensional quantum lattice systems. The algorithm can be used, e.g., to construct thermal states or to simulate real time evolutions given by a generic master equation. Its two main ingredients are (i) a superoperator renormalization scheme to efficiently describe the state of the system and (ii) the time evolving block decimation (TEBD) technique to efficiently update the state during a time evolution. The computational cost of a simulation increases significantly with the amount of correlations between subsystems but it otherwise depends only linearly in the system size. We present simulations involving quantum spins and fermions in one spatial dimension.
Source arXiv, cond-mat/0406440
Other source [GID 31777] pmid15600965
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica