Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 2005.5466

 Article overview



Star-Gas Surface Density Correlations in Twelve Nearby Molecular Clouds I: Data Collection and Star-Sampled Analysis
Riwaj Pokhrel ; Robert A. Gutermuth ; Sarah K. Betti ; Stella S. R. Offner ; Philip C. Myers ; S. Thomas Megeath ; Alyssa D. Sokol ; Babar Ali ; Lori Allen ; Tom S. Allen ; Michael M. Dunham ; William J. Fischer ; Thomas Henning ; Mark Heyer ; Joseph L. Hora ; Judith L. Pipher ; John J. Tobin ; Scott J. Wolk ;
Date 12 May 2020
AbstractWe explore the relation between the stellar mass surface density and the mass surface density of molecular hydrogen gas in twelve nearby molecular clouds that are located at $<$1.5 kpc distance. The sample clouds span an order of magnitude range in mass, size, and star formation rates. We use thermal dust emission from $Herschel$ maps to probe the gas surface density and the young stellar objects from the most recent $Spitzer$ Extended Solar Neighborhood Archive (SESNA) catalog to probe the stellar surface density. Using a star-sampled nearest neighbor technique to probe the star-gas surface density correlations at the scale of a few parsecs, we find that the stellar mass surface density varies as a power-law of the gas mass surface density, with a power-law index of $sim$2 in all the clouds. The consistent power-law index implies that star formation efficiency is directly correlated with gas column density, and no gas column density threshold for star formation is observed. We compare the observed correlations with the predictions from an analytical model of thermal fragmentation, and with the synthetic observations of a recent hydrodynamic simulation of a turbulent star-forming molecular cloud. We find that the observed correlations are consistent for some clouds with the thermal fragmentation model and can be reproduced using the hydrodynamic simulations.
Source arXiv, 2005.5466
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica