Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 2005.8051

 Article overview


Charge Collection and Electrical Characterization of Neutron Irradiated Silicon Pad Detectors for the CMS High Granularity Calorimeter
N. Akchurin ; P. Almeida ; M. Alyari ; T. Bergauer ; E. Brondolin ; Z. Gecse ; V. Kuryatkov ; R. Lipton ; M. Mannelli ; T. Mengke ; P. Paulitsch ; T. Peltola ; F. Pitters ; E. Sicking ; M. Vicente Barreto Pinto ; Z. Wang ; R. Yohay ;
Date 16 May 2020
AbstractThe replacement of the existing endcap calorimeter in the Compact Muon Solenoid (CMS) detector for the high-luminosity LHC (HL-LHC), scheduled for 2027, will be a high granularity calorimeter. It will provide detailed position, energy, and timing information on electromagnetic and hadronic showers in the immense pileup of the HL-LHC. The High Granularity Calorimeter (HGCAL) will use 120-, 200-, and 300-$mu extrm{m}$ thick silicon (Si) pad sensors as the main active material and will sustain 1-MeV neutron equivalent fluences up to about $10^{16}~ extrm{n}_ extrm{eq} extrm{cm}^{-2}$. In order to address the performance degradation of the Si detectors caused by the intense radiation environment, irradiation campaigns of test diode samples from 8-inch and 6-inch wafers were performed in two reactors. Characterization of the electrical and charge collection properties after irradiation involved both bulk polarities for the three sensor thicknesses. Since the Si sensors will be operated at -30 $^circ$C to reduce increasing bulk leakage current with fluence, the charge collection investigation of 30 irradiated samples was carried out with the infrared-TCT setup at -30 $^circ$C. TCAD simulation results at the lower fluences are in close agreement with the experimental results and provide predictions of sensor performance for the fluence regions not covered by the experimental study. All investigated sensors display 60$\%$ or higher charge collection efficiency at their respective highest lifetime fluences when operated at 800 V, and display above 90$\%$ at the lowest fluence, at 600 V. The collected charge close to the fluence of $10^{16}~ extrm{n}_ extrm{eq} extrm{cm}^{-2}$ exceeds 1 fC at voltages beyond 800 V.
Source arXiv, 2005.8051
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica