Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 2191
Articles: 1'906'541
Articles rated: 2570

23 October 2019
 
  » arxiv » cond-mat/0407642

  Article overview


The fundamental role of charge asymmetry in superconductivity
J.E. Hirsch ;
Date 23 Jul 2004
Subject Superconductivity | cond-mat.supr-con
AbstractNeither BCS theory nor London theory contain any charge asymmetry. However it is an experimental fact that a rotating superconductor always exhibits a magnetic field parallel, never antiparallel, to its angular velocity. This and several other experimental observations point to a special role of charge asymmetry in superconductivity, which is the foundation of the theory of hole superconductivity. The theory describes heavy dressed {it positive} hole carriers in the normal state that undress by pairing and become light undressed {it negative} electron carriers in the superconducting state. Superconductivity is driven by kinetic energy lowering rather than by electron-phonon coupling as in BCS. In quantum mechanics, kinetic energy lowering is associated with $expansion$ of the electronic wave function, and hence we predict: (1) Superconductors expel $negative$ charge from their interior which consequently becomes $positively$ charged; (2) Macroscopic electrostatic fields exist in the interior of superconductors always, and in certain cases also outside near the surface; (3) Macroscopic spin currents exist in the superconducting state; (4) Superconductors are ’rigid’ with respect to their response to applied longitudinal electric fields. These predictions apply to all superconductors and are testable but are as yet untested. The theory predicts highest $T_c$’s for materials for which normal state transport occurs through $(positive)$ holes in $negatively$ charged anions.
Source arXiv, cond-mat/0407642
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (https://commoncrawl.org/faq/)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2019 - Scimetrica