Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » 2006.2400

 Article overview



Nonequilibrium phase transition in transport through a driven quantum point contact
Oleksandr Gamayun ; Artur Slobodeniuk ; Jean-Sébastien Caux ; Oleg Lychkovskiy ;
Date 3 Jun 2020
AbstractWe study transport of noninteracting fermions through a periodically driven quantum point contact (QPC) connecting two tight-binding chains. Initially each chain is prepared in its own equilibrium state, generally with a bias between the chains. We examine the heating rate (or, alternatively, energy increase per cycle) in the nonequilibrium time-periodic steady state established after initial transient dynamics. We find that the heating rate vanishes identically when the driving frequency exceeds the bandwidth of the chain. We first establish this fact for a particular type of QPC where the heating rate can be calculated analytically. Then we verify numerically that this nonequilibrium phase transition is present for a generic QPC. Finally, we derive this effect perturbatively in leading order for cases when the QPC Hamiltonian can be viewed as a small perturbation. Strikingly, we discover that for certain QPCs the current averaged over the driving cycle also vanishes above the critical frequency, despite a persistent voltage bias. This shows that a driven QPC can act as a frequency-controlled quantum valve.
Source arXiv, 2006.2400
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica