Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » 2006.6590

 Article overview


Mid-infrared Studies of HD 113766 and HD 172555: Assessing Variability in the Terrestrial Zone of Young Exoplanetary Systems
Kate Y. L. Su ; George H. Rieke ; Carl Melis ; Alan P. Jackson ; Paul S. Smith ; Huan Y. A. Meng ; Andras Gaspar ;
Date 11 Jun 2020
AbstractWe present multi-epoch infrared photometry and spectroscopy obtained with warm Spitzer, Subaru and SOFIA to assess variability for the young ($sim$20 Myr) and dusty debris systems around HD 172555 and HD 113766A. No variations (within 0.5%) were found for the former at either 3.6 or 4.5 $mu$m, while significant non-periodic variations (peak-to-peak of $sim$10-15% relative to the primary star) were detected for the latter. Relative to the Spitzer IRS spectra taken in 2004, multi-epoch mid-infrared spectra reveal no change in either the shape of the prominent 10 $mu$m solid-state features or the overall flux levels (no more than 20%) for both systems, corroborating that the population of sub-$mu$m-sized grains that produce the pronounced solid-state features is stable over a decadal timescale. We suggest that these sub-$mu$m-sized grains were initially generated in an optically thick clump of debris of mm-sized vapor condensates resulting from a recent violent impact between large asteroidal or planetary bodies. Because of the shielding from the stellar photons provided by this clump, intense collisions led to an over-production of fine grains that would otherwise be ejected from the system by radiation pressure. As the clump is sheared by its orbital motion and becomes optically thin, a population of very fine grains could remain in stable orbits until Poynting-Robertson drag slowly spirals them into the star. We further suggest that the 3-5 $mu$m disk variation around HD 113766A is consistent with a clump/arc of such fine grains on a modestly eccentric orbit in its terrestrial zone.
Source arXiv, 2006.6590
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica