Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 2006.8520

 Article overview


Pairing of Massive Black Holes in Merger Galaxies Driven by Dynamical Friction
Kunyang Li ; Tamara Bogdanovic ; David R. Ballantyne ;
Date 15 Jun 2020
AbstractMotivated by observational searches for massive black hole (MBH) pairs at kiloparsec separations we develop a semi-analytic model to describe their orbital evolution under the influence of stellar and gaseous dynamical friction (DF). The goal of this study is to determine how the properties of the merger remnant galaxy and the MBHs affect the likelihood and timescale for formation of a close MBH pair with separation of < 1 pc. We compute approximately 40,000 configurations that cover a wide range of host galaxy properties and investigate their impact on the orbital evolution of unequal mass MBH pairs. We find that the percentage for MBH pairing within a Hubble time is larger than 80% in remnant galaxies with a gas fraction < 20% and in galaxies hosting MBH pairs with total mass > 10^6 solar mass and mass ratios > 1/4. Among these, the remnant galaxies characterized by the fastest formation of close, gravitationally bound MBHs have one or more of the following properties: (1) large stellar bulge, (2) comparable mass MBHs and (3) a galactic gas disk rotating close to the circular speed. In such galaxies, the MBHs with the shortest inspiral times, which are likely progenitors of coalescing MBHs, are either on circular prograde orbits or on very eccentric retrograde orbits. Our model also indicates that remnant galaxies with opposite properties, that host slowly evolving MBH pairs, are the most likely hosts of dual AGNs at kiloparsec separations.
Source arXiv, 2006.8520
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica