Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 2006.8621

 Article overview


Quantifying the Stellar Halo's Response to the LMC's Infall with Spherical Harmonics
Emily C. Cunningham ; Nicolas Garavito-Camargo ; Alis J. Deason ; Kathryn V. Johnston ; Denis Erkal ; Chervin F. P. Laporte ; Gurtina Besla ; Rodrigo Luger ; Robyn E. Sanderson ;
Date 15 Jun 2020
AbstractThe vast majority of the mass in the Milky Way (MW) is in dark matter (DM); we therefore cannot directly observe the MW mass distribution, and have to use tracer populations in order to infer properties of the MW DM halo. However, MW halo tracers do not only feel the gravitational influence of the MW itself. Tracers can also be affected by MW satellites; Garavito-Camargo et al. (2019) (hereafter GC19) demonstrate that the Large Magellanic Cloud (LMC) induces a density wake in the MW DM, resulting in large scale kinematic patterns in the MW stellar halo. In this work, we use spherical harmonic expansion (SHE) of the velocity fields of simulated stellar halos in an effort to disentangle perturbations on large scales (e.g., due to the LMC itself as well as the LMC-induced DM wake) and small scales (due to substructure). Using the GC19 simulations, we demonstrate how the different terms in the SHE of the stellar velocity field reflect the different wake components, and show that these signatures are a strong function of the LMC mass. An exploration of model halos built from accreted dwarfs Bullock & Johnston (2005) suggests that stellar debris from massive, recent accretion events can produce much more power in the velocity angular power spectra than the perturbation from the LMC-induced wake. We therefore consider two models for the Sagittarius (Sgr) stream -- the most recent, massive accretion event in the MW apart from the LMC -- and find that the angular power on large scales is generally dominated by the LMC-induced wake, even when Sgr is included. We conclude that SHE of the MW stellar halo velocity field may therefore be a useful tool in quantifying the response of the MW DM halo to the LMC’s infall.
Source arXiv, 2006.8621
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica