Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 2006.9795

 Article overview


Herschel-PACS photometry of Uranus' five major moons
Ö. H. Detre ; T. G. Müller ; U. Klaas ; G. Marton ; H. Linz ; Z. Balog ;
Date 17 Jun 2020
AbstractAims. We aim to determine far-infrared fluxes at 70, 100, and 160$mu$m of the five major Uranus satellites Titania, Oberon, Umbriel, Ariel and Miranda, based on observations with the photometer PACS-P aboard the Herschel Space Observatory.
Methods. The bright image of Uranus is subtracted using a scaled Uranus point spread function (PSF) reference established from all maps of each wavelength in an iterative process removing the superimposed moons. Photometry of the satellites is performed by PSF photometry. Thermophysical models of the icy moons are fitted to the photometry of each measurement epoch and auxilliary data at shorter wavelengths.
Results. The best fitting thermophysical models provide constraints for important thermal properties of the moons like surface roughness and thermal inertia. We present the first thermal infrared radiometry longward of 50$mu$m of the four largest Uranian moons, Titania, Oberon, Umbriel and Ariel, at epochs with equator-on illumination. Due to this inclination geometry there was heat transport to the night side so that thermal inertia played a role, allowing us to constrain that parameter. Also some indication for differences in the thermal properties of leading and trailing hemispheres is found. We specify precisely the systematic error of the Uranus flux by its moons, when using Uranus as a far-infrared prime flux calibrator.
Conclusions. We have successfully demonstrated an image processing technique for PACS photometer data allowing to remove a bright central source. We have established improved thermophysical models of the five major Uranus satellites. Derived thermal inertia values resemble more those of TNO dwarf planets Pluto and Haumea than those of smaller TNOs and Centaurs.
Source arXiv, 2006.9795
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica