Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3644
Articles: 2'499'343
Articles rated: 2609

16 April 2024
 
  » arxiv » cond-mat/0409542

 Article overview


Heat can flow from cold to hot in Microcanonical Thermodynamics of finite systems. The microscopic origin of condensation and phase separations
D.H.E.Gross ;
Date 21 Sep 2004
Subject Statistical Mechanics; History of Physics | cond-mat.stat-mech nucl-th physics.hist-ph
AbstractMicrocanonical Thermodynamics allows the application of Statistical Mechanics on one hand to closed finite and even small systems and on the other to the largest,self-gravitating ones. However, one has to reconsider the fundamental principles of Statistical Mechanics especially its key quantity, entropy. Whereas in conventional Thermostatistics the homogeneity and extensivity of the system and the concavity of its entropy S(E) are central conditions, these fail for the systems considered here. E.g. at phase separation the entropy S(E) is necessarily convex to make e^{S(E)-E/T} bimodal in E (the two coexisting phases). This is so even for normal macroscopic systems with short-range coupling. As inhomogeneities and surface effects in particular cannot be scaled away,one has to be careful with the standard arguments of splitting a system into two or bringing two systems into thermal contact. Not only the volume part of the entropy must be considered. When removing an external constraint in regions of a negative heat capacity, the system may even relax under a flow of heat (energy) against the temperature slope. Thus Clausius formulation of the Second Law: "Heat always flows from hot to cold" can be violated. Temperature is not a necessary or fundamental control parameter of Thermostatistics. In the final sections of this paper the general microscopic mechanism leading to condensation and to the convexity of the microcanonical entropy S(E) at phase separation is sketched. Also the microscopic conditions for the existence or non-existence of a critical end-point of the phase-separation are discussed. This is explained for the liquid--gas and the solid--liquid transition.
Source arXiv, cond-mat/0409542
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica