Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 2007.8391

 Article overview


Stellar Parameter Determination from Photometry using Invertible Neural Networks
Victor F. Ksoll ; Lynton Ardizzone ; Ralf Klessen ; Ullrich Koethe ; Elena Sabbi ; Massimo Robberto ; Dimitrios Gouliermis ; Carsten Rother ; Peter Zeidler ; Mario Gennaro ;
Date 16 Jul 2020
AbstractPhotometric surveys with the Hubble Space Telescope (HST) remain one of the most efficient tools in astronomy to study stellar clusters with high resolution and deep coverage. Estimating physical parameters of their constituents from photometry alone, however, is not a trivial task. Leveraging sophisticated stellar evolution models one can simulate observations and characterise stars and clusters. Due to observational constraints, such as extinction, photometric uncertainties and low filter coverage, as well as intrinsic effects of stellar evolution, this inverse problem suffers from degenerate mappings between the observable and physical parameter space that are difficult to detect and break. We employ a novel deep learning approach called conditional invertible neural network (cINN) to solve the inverse problem of predicting physical parameters from photometry on an individual star basis. Employing latent variables to encode information otherwise lost in the mapping from physical to observable parameter space, the cINN can predict full posterior distributions for the underlying physical parameters. We build this approach on carefully curated synthetic data sets derived from the PARSEC stellar evolution models. For simplicity we only consider single metallicity populations and neglect all effects except extinction. We benchmark our approach on HST data of two well studied stellar clusters, Westerlund 2 and NGC 6397. On the synthetic data we find overall excellent performance, with age being the most difficult parameter to constrain. For the real observations we retrieve reasonable results and are able to confirm previous findings for Westerlund 2 on cluster age ($1.04_{-0.90}^{+8.48},mathrm{Myr} $), mass segregation, and the stellar initial mass function.
Source arXiv, 2007.8391
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica